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Based on the one-dimensional thermo-mechanical constitutive relation of a shape-memory 
alloy (SMA) in which the dependence of the elastic modulus of SMA upon the martensite 
fraction is considered, a constitutive relation for the bending of a composite beam with 
eccentrically embedded SMA wires has been developed. The deflection-temperature 
relation upon heating and cooling has been analysed for the SMA-reinforced composite 
beam. 

1. Introduction 
The shape-memory alloy has attracted wide attention 
during the past decades due to its unique shape-mem- 
ory effect (SME). It has been successfully used in many 
engineering as well as medical applications, such as 
tube connectors, joint rivets, satellite antenna, ac- 
tuators in automatic control system and medical ap- 
pliances in orthodontia and orthopaedic surgery. 
Only in recent years, however, has a further important 
application of SMA been found because it is a typical 
"smart material" as proposed by Rogers and Robert- 
shaw [1]. The SMA, as well as other smart materials, 
such as optical fibres, electro-rheological fluids 
and piezoelectric materials, can be attached 
to or embedded in conventional fibre-reinforced 
composites or isotropic materials (metals or plas- 
tics) to act as a sensor or actuator. One of the 
prospective applications of SMA-reinforced com- 
posites is the active vibration control of large 
flexible aerospace and space structures. Thus it would 
be beneficial to know explicitly the constitutive 
relations between applied forces, deformation and 
temperature of SMA-reinforced structural compo- 
nents before the active control of their dynamic 
responses are investigated. 

In a previous study [2], we developed a thermo- 
mechanical constitutive relation for SMA-reinforced 
lamina in which the dependence of the elastic modulus 
of SMA upon the martensite fraction is taken into 
account. The constitutive relation between the applied 
moment, the curvature and temperature for a com- 
posite beam with eccentrically embedded SMA wires 
has been further developed and its free bending due to 
heating and cooling has been analysed in the present 
study based on the same consideration. 
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2. Tensile behaviour of the SIVIA wire 
Before the behaviour of SMA-reinforced composites is 
analysed, it is necessary to give a mathematical de- 
scription of the tensile behaviour of a pure SMA wire. 
The uniaxial thermo-mechanical relation of SMA dur- 
ing the course of stress-induced martensitic trans- 
formation or the reverse transformation, has been 
given by Tanaka [3] 

where r and ~a are the stress and the strain of SMA, 
D, 0 and f2 are elastic modulus, thermo-coefficient and 
phase-transformation coefficient of SMA, respectively. 

is the martensite fraction (0 _< ~ _< t), T is the tem- 
perature. The elastic modulus, D, is in general a func- 
tion of temperature, T, and martensite fraction, ~. In 
most of the previous research [3,4] D was treated as 
a constant throughout the process. However, the elas- 
tic modulus of SMA in the martensite phase is often 
much less than that in the austenite phase. The elastic 
modulus of 55-NiTinol in the austenite phase, for 
example, is more than three times as high as that in the 
martensite phase. As in the previous study [2], the 
present study also assumes that D(~) is a function of 

such that 

D(~) - D A - - D M [ c o s ( ~ ) + l j + D M  (2) 
2 

where DM and D A are elastic modulus of SMA when in 
the martensite phase (~ = 1) and in the austenite phase 
(~ =0), respectively. 

Equation 1 can then be written in the following 
differential form 

D(~)d~a = d % -  a d ~ -  0 d T  (3) 
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T A B L E  I. Material constants  for SMA 

D A D M f~ 0 M f  M~ A, Af CM CA 
(MPa) (MPa) (MPa) ( M P a ~  -~) (~ (~ (~ (~ ( M P a ~  -~) ( M P a ~ C  ~) 

75.9 x 103 24.1 • 103 - 700 0.1 - 30 0 10 40 2.5 2.5 

Liang and Rogers [-4] suggested that the depend- 
ence of martensite fraction, ~, upon temperature, T, 
and stress, ~ ,  of SMA can be described by a cosine 
function. During the course of the phase transforma- 
tion from martensite to austenite, ~ is given by 

1 
= ~ ~M{COS[-a.(T -- As) -- bA%] + 1} (4) 

and during the course of martensitic transformation 

= (1 - ~A)COS[aa(T -- Mr) -- bM%] + ~(1 + ~A) 

(5) 

where the material coefficients are 

aA 
E 

- ( 6 a )  
A f  - -  As 

TC 
- ( 6 b )  

M~ - -  M f  
aM 

b A - aA (6c) 
CA 

bM - aM (6d) 
CM 

where As, Af, M~ and Mr are the austenite and mar- 
tensite start and finish temperatures of the SMA under 
stress-free conditions; respectively. CA and Ca are 
SMA material constants related to stress-induced 
phase transformation. ~M and ~A are initial martensite 
fractions when the M -* A or the A --* M transforma- 
tion starts from a state which has mixed martensite 
and austenite phases. 

As demonstrated elsewhere [2], the uniaxial 
thermo-mechanical constitutive relation of SMA can 
be expressed as 

D(~)dG = ( 1 - D ~ a )  d ( Y a - ( 0 + f ~ T ) d T  

(7) 
partial differential of ~ with respect to where the 

~ and T is given by 

e~ 1 
- ~Mba sinl-aA(T -- As) - bACYa] 

~(Ya 2 

~ = -- ~ ~Maa Sin[aA( T -- A~) -- bACYa] 

(8a) 

(8b) 

for the transformation from martensite to austenite, 
and 

~(Ya -- 2 (1 -- ~A)bMsinEaM(T - - M r ) -  b a % ]  

(%) 
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Figure 1 Stress strain relation of a SMA wire under T = 0 3 C. 

- (1 - ~A)aMsin[aM(T -- M f )  - b a % ]  
~T 2 

(9b) 

for the transformation from austenite to martensite. 
Under constant temperature, Equation 7 becomes 

an ordinary differential equation because d T  = 0. The 
relation of stress, %, and strain, G, for SMA can be 
obtained by numerical integration such as the 
Runga-Kut ta  method. The material constants of the 
SMA are assumed and are listed in Table I. 

Fig. 1 depicts the stress-strain relation of the SMA 
subjected to tensile stress under constant temperature 
(T = 0 ~ Initially the SMA is assumed in pure aus- 
tenite phase (~ =0). The tensile stress causes marten- 
site transformation and a large strain results from this 
phase transformation. The SMA is unloaded from 
point A when the stress reaches 75 MPa, and the 
martensite fraction ~ reaches 1. The straight line AA' 
depicts that the unloading process is only an elastic 
recovery with the modulus in martensite phase 
DM =24.1 GPa. The "residual strain" remaining at 
zero stress can be recovered by heating the SMA. In 
Fig. 2 the stress-strain relation of the SMA when 
T = 10 ~ is presented. Initially the SMA is also as- 
sumed to be in pure austenite phase (~ = 0). Stage OA 
describes the elastic deformation of SMA in the aus- 
tenite phase with elastic modulus DA = 75.9 GPa. The 
stress-induced martensite transformation is started at 
point A and the strain increases rapidly. At point B the 
stress of the SMA is 80 MPa and the martensite frac- 
tion ~ is 0.83. The straight line BB' shows that the 
elastic unloading starts from a state with mixed aus- 
tenite and martensite phases. The modulus of this 
state can be obtained from Equation 2, that is, 
D =27.7 GPa. It is found that the curves shown in 
Figs 1 and 2 are quite similar to the curves of experi- 
mental results reported in the literature. 
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Figure 2 Stress-strain relation of a SMA wire under T = 10 ~ C. 

3. Bending of the SMA-reinforced 
composite beam 

The matrix in which SMA wires are embedded may be 
either conventional fibre-reinforced composites such 
as glass/epoxy or graphite/epoxy, or isotropic mate- 
rials, such as metals or plastics. In the following, the 
stress and the strain of the matrix in the SMA wire's 
direction (axial direction) are denoted as ~m and am, 
the elastic modulus and the thermal expansion coeffi- 
cient in the same direction are denoted as E~ and am, 
the volume fraction of the SMA wires and the matrix 
are denoted as V~ and Vm, respectively. If the SMA 
wires are elongated at a relatively low temperature, as 
depicted in Figs 1 and 2, a certain "residual" strain will 
be retained. As shown in Fig. 3, the pre-elongated 
SMA wires are assumed to be eccentrically embedded 
in a beam. It  is expected that the beam will bend when 
heating, due to the contraction of the SMA wires 
during austenite phase transformation. For  rectangu- 
lar beam with height, h, width, b, and length, L, as 
shown in Fig. 4, the eccentricity parameter, e, is de- 
fined as the distance between the middle surface O ' O "  
and the neutral surface Ox where the axial strain is 
zero when bending. For  simplicity of analysis, the 
SMA wires which are embedded below the middle 
surface are assumed to be a layer with height, g, and 
width, b. The distance between the middle surface and 
the top of this layer is hi and that between the bot tom 
of this layer and the lower surface of the beam is h2. 
The cross-sectional region of the matrix above and 
below the SMA layer are denoted as f~  and ~2, 
respectively. There are three independent variables, 
namely moment  M, curvature of the beam k = 1/9 (p 
is the radius of curvature), and temperature, T. The 
axial strain at the surface with ordinate y can be 
written as 

Y a = - (10) 
P 

The axial equilibrium condition of stress resultants 
E Fx = 0 can be written as 

fa cymbdy + in r + c~,gb = 0 (11) 
1 2 
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Figure 3 SMA-reinforced beam. 

Figure 4 Geometry of the SMA-reinforced beam. 

From the constitutive relation for the matrix, we have 

c~,n = ( 8 m - ~ m A r ) E m = ( k y - a m A T ) E  m (12) 

Substituting Equation 12 into Equation 11 and integ- 
rating leads to 

9 
(gC2 -- Cle)k = amATC1 /3~m Cya (13) 

Then the stress of the embedded SMA can be written 
as 

g 
(5" a -- ~-rn[~mZ~TC1 + (Cle - gC2)]r ] (14) 

where C1 = h - g, C2 = �89 + h. Equation 13 can be 
written in the following differential form 

g-d~a - k C l d e  = OtmCldT + (Cle - 9C2)dk 
E~ 

(15) 

The strain of SMA can be written as 

Y a  

9 

= kya = - (e + C2)k (16) 

It is noted that the variation of the strain, aa, with 
respect to y is neglected here for simplicity. This ap- 
proximation is acceptable because the volume fraction 
of SMA is assumed to be small. Differentiation of 
Equation 16 leads to 

daa = - [kde + (e + C2)dk] (17) 



Eliminating dG from Equations 7 and 17 leads to 

( 1 - f ~ - ~ ) d % + D ( ~ ) k d e  

=-D(~)(e+C2)dk+@+f~ 8~a) dT (18) 

Equations 15 and 18 are two simultaneous equations 
for the quantities d% and de. The expression for de 
can be written as 

de 

gD(~) 
(e + C2)/dk 

} 
The equilibrium of :moment about the z-axis (not 
shown) for the beam Z M = 0 can be written in the 
form 

M = ~ (ymybdy + ~ Cymyb dy + %y, gb (20) 
l ,J~'~2 

Substituting Equations 10, 12 and 15 into Equation 
20, we obtain 

- C2khe + (C2 g - ~ ) k - c x m A  T C2h 
M 

- 0  bErn 
(21a) 

where 

1 
C3 = ~(g 3 + 3h2g + 3hlg2 - h 3) (21b) 

The expression for eccentricity, e, can be written as 

[-C2g -- (C3/3)] k - ~mATC2h - (M/bEm) e-- C2hk 
(22) 

Differentiation of Equation 21 leads to: 

dM _ (C2 g C3 C2he)dk 
bEm 3 

- C2h~mdT - C2hkde (23) 

Substitution of Equation 19 into Equation 23 leads to 
the differential relation of M, k and T 

d M -  {c~ 9 ~ C2he 

+ C h[(1- a 

9D(~) 1 + . ~  (e + C2) 

•  E m 

+ { - C2ham + C2hI(1- ~-~a)~mC1 

Em 

x ~  9d(~)[_ Em + ( 1 - f ~ ) C l l - 1 } d T  (24) 

Equation 24 is the differential constitutive relation of 
the applied moment, M, curvature, k, and temper- 
ature, T, of the SMA-reinforced beam. In Equation 24 
both ~/~C~a and ~/~T  are functions of % and T, 
and the variables cya, ~ and e are all functions of k and 
T. Finally, Equation 24 contains only variable M, k 
and T and their differentials. In a process under con- 
stant temperature, Equation 24 becomes an ordinary 
differential equation of M and k because d T =  0. The 
relation between the moment, M, and curvature, k, 
can be obtained by numerical integration of this equa- 
tion. In a process when the two ends of the beam are 
fully restrained, i.e. dk = 0, the relation between the 
moment, M, built up in the beam and temperature, T, 
can be obtained by integrating Equation 24. If the 
process is free from external load, i.e. dM = 0, then 
integration of Equation 24 leads to the relation be- 
tween the curvature, k, and temperature, T. As an 
example, the last case will be investigated in the next 
section using numerical examples. 

4. Results and discussion 
Two types of fibre/resin matrices are considered for 
calculation. The SMA wires are laid parallel to the 
fibres of the matrices in both cases. The first type of 
matrix is glass/epoxy with axial modulus Em= E1 ~ = 
39.3 GPa, and thermal expansion coefficient ar~ = 
6.6 x 10-6 ~ The other one is graphite/epoxy with 
E m -- 146 GPa, ~m = -- 1.1 x 10 - 6  ~  1. The geo- 
metry parameters of the beam are h = b = 5 mm, 
L = 150 mm, hi = h2 = 1.0 mm, g = 0.5 mm. The vol- 
ume fraction of SMA is 10%. The deflection of the 
middle surface of the beam, w, can be expressed as 

w = (p - e) ~ (25) 

where 6 = L/[2(9 - e)J. In Fig. 5 the deflection, w, of 
the beam with glass/epoxy matrix is plotted against 
temperature, T. The initial temperature is assumed to 
be To = 0 ~ which is well below the austenite start- 
ing temperature, A,, and the initial martensite frac- 
tion, ~ ,  is assumed to be 1.0, i.e. the SMA is in pure 
martensite phase. At the stage AB, the beam bends 
slightly because the bending is induced by inconsist- 
ency of the thermal expansions between the matrix 
and the SMA wires. The magnitude of deflection due 
to thermal expansion is small. Starting from point B, 
the rate of bending of the beam increases rapidly. It is 
seen that point B is close to the austenite starting 
temperature As = 10~ The large magnitude of 
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Figure 5 Deflexion-temperature relation for the SMA-reinforced 
beam with glass/epoxy matrix. 
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Figure 6 Deflexion-temperature relation for the SMA-reinforced 
beam with graphite/epoxy matrix. 

bending at stage BC is caused by the contraction of 
SMA wires due to austenite phase transformation. 
The beam is assumed to be cooled down from point 
C when T = 60~ and ~ = 0.85. The magnitude of 
thermal recovery at stage CD is small. The reverse 
transformation of SMA from austenite to martensite 
starts from point D. At stage DE the beam is re- 
covered rapidly due to the martensite transformation 
of SMA. At this stage, the martensite transformation is 
caused both by decrease of temperature and by the 

tensile stress of SMA which is in balance with the 
elastic recovery force of the matrix. 

Fig. 6 depicts the relation between the deflection, w, 
of the beam with graphite/epoxy matrix and temper- 
ature T. The starting temperature at point A is also 
To = 0 ~ Because of the high axial modulus of the 
graphite/epoxy matrix, the deflection of the beam is 
much smaller than that of the beam with glass/epoxy 
matrix. The trend of the variation of deflection, w, is 
similar to that of the beam with glass/epoxy matrix. 

5. Conclusion 
Besides its unique shape-memory effect, which 
qualifies SMA as a smart material, SMA is also 
a metal with good mechanical properties, such as high 
specific strength and high fatigue strength. In this 
respect, SMA has an advantage over the other smart 
materials, such as piezo-electric polymers, electro- 
rheological fluids and optical fibres. However, the 
disadvantage of SMA is that the reaction (stress or 
strain) caused by phase transformation of SMA does 
not proportionally relate to the input (electrical poten- 
tial or current). In this study an effort has been made 
to develop a relation between the temperature which 
may be used as an intermediate variable between the 
input and the reaction, the applied moment and the 
deformation of a SMA-reinforced beam. We believe 
that SMA-reinforced composites have bright potential 
in active vibration control of aerospace and space 
structures. 
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